

Applying New Chemical United States Environmental Protection Assessment Approaches in **Human Health Risk Assessment**

Kate Z. Guyton, PhD DABT ORD, US EPA

SAB/BOSC review July 11-12, 2012

Outline

- Human health risk assessment needs and priorities
- Synthesis and innovation examples:
 - Characterizing chemicals lacking toxicity values
 - Priority-setting for evaluation and assessment
 - Applying novel data streams in risk assessments
- Sustainability assessment tools
- Summary

NRC GUIDANCE:

2009

2010 2011

SAB-BOSC GUIDANCE:

- Align with regional and national program office needs, inform decisions
- Bridge gap between ORD's innovative work and the scientific information used for decision-making

EPA STRATEGIC PLAN FOR EVALUATING THE TOXICITY OF CHEMICALS

IMPLEMENTATION OF STRATEGIC RESEARCH ACTION PLANS:

Chemical Safety for Sustainability

Human Health Risk Assessment

Human Health Risk Assessment:

Needs and Priorities

- Address risks from chemicals currently lacking toxicity values
- Provide outputs that can be utilized in economic health benefits analyses
- Move beyond single chemical/stressorbased assessments

Risk Assessor's "Tool Box":

Decision contexts and data availability drive selection process

Predictions using inherent chemical properties

SYSTEMS BIOLOGY DATA

Example Integration Products

Predictions using inherent chemical properties

SYSTEMS BIOLOGY DATA

Example #1: Generating Toxicity Values for Chemicals with Limited Experimental Data:

Conditional Toxicity Value (CTV) Predictor

United States Environmental Protection Agency

Conditional Toxicity Value (CTV) Predictor Rationale and Background

^{*}TEF = Toxicity Equivalent Factor

Conditional Toxicity Value (CTV) Predictor Predictive Modeling Approach

Data streams for model development

Conditional Toxicity Value (CTV) Predictor End User Interaction with Dashboard

End User Input

Step 1:

Input compound(s)

- Name, CAS#, SMILES
- Drawing of a structure, etc

Step 4:

Select Models to Use

- Which CTV? (RfD, CPV, etc)
- What types of models? (QSAR, Biological, Hybrid)

- Generate inherent chemical properties
- Determine what Toxicity
 Data/Values are available

Step 3: Present Options

- Output Toxicity Values (if available)
- Provide choices to the end user before *Toxicity Value(s)* prediction

Dashboard

Step 5: Predict Selected Conditional Toxicity Values

- Run selected modeling routines
- Generate (i) numerical outputs, (ii) model performance metrics,
 (iii) ranked lists, and (iv) graphical representations of the outputs

Outputs

Step 6: CTV Outputs (Toxicity Values and/or PODs for each compound)

QSAR CTV-RfD = 123 mg/kg (within applicability domain)

Model performance: 150 chemicals; $R^2 = 0.37$; MAE = 0.55 log_{10} units dose

Biological CTV-RfD = 144 mg/kg (within applicability domain)

Model performance: 271 chemicals; $R^2 = 0.58$; MAE = 0.60 log_{10} units dose

Basic Components of a Risk Assessment

Ranking,
Grouping and
Prioritization
for
Assessments

Hazard Identification

Mode of
Action,
Relevance of
Test Species,
Variability,
etc

Dose Response **Exposure Assessment**

SYSTEMS BIOLOGY DATA

QSAR qHTS screening

QSAR qHTS screening altern. species

qHTS screening altern. species -omics

in vitro data altern. species -omics

Biomonitoring "Exposome"

Example #2: Applying Prioritization Tools to Assessment Ranking and Grouping

United States Environmental Protection Agency

Chemical Prioritization Tools:

Toxicological Prioritization Index (ToxPi)

- Organizes and integrates information from disparate sources: in vitro, in vivo, pathways and exposure
- Potential applications: selecting chemicals for grouping or assessment

Example #3: Applying Novel Data Streams in Health Risk Assessments

EPA

Environmental Protection

TOX21 IN VITRO HUMAN CELL-BASED MODEL:

ADDRESSING CHALLENGES IN HAZARD ID, MODE OF ACTION, DOSE-RESPONSE AND VARIABILITY ANALYSES

Genetically diverse

Genetically defined

In vitro model system

- The International HapMap Project
- The 1000 Genomes Project

Estimating "Individual" vs "population" response

response across cell lines

Genetic variation across populations

Genome scans aid identification of susceptibility loci

- Additional microarray data for approximately 500 cell lines
- RNA-Seq data being gathered on several hundred lines

Example #4: Applying Health Hazard Information in Sustainability Tools

Assessing Sustainability:

EPA Comprehensive Environmental Assessment (CEA)

HHRA can provide inputs regarding chemical hazard identification and dose response

Environmental Protection

Agency

- Aid evaluation of environmental implications of choices among chemicals, products, and technologies
- Aid identification, prioritization of ORD research
- Enable better targeted decisions

Summary of Integration Goals

Develop innovative approaches to:

- Characterize the toxicity of untested or inadequately tested chemicals
- > Set priorities for chemical grouping and assessment
- Apply novel data streams in human health risk assessments
- Inform environmental sustainability and life cycle analyses